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Abstract-We develop an asymptotic theory for dynamic analysis of anisotropic inhomogeneous
plates within the framework of three-dimensional elasticity. The inhomogeneities are considered to
be in the thickness direction and the laminated plates belong to an important class of this type of
inhomogeneous plates. Through nondimensionalization and introduction of the multiple time scales
in the formulation, we obtain a uniform expansion of the field variables in even powers of a small
plate parameter. The expansion yields an asymptotic solution valid regardless of the time span,
whereas a straightforward expansion fails to produce convergent results. We show by successive
integration that the equations for the asymptotic solution are of the same form as those in the
classical laminated plate theory (CLT). While the asymptotic solution is no more difficult than the
CLT solution, it is capable of yielding displacements and all the stress components in a consistent
and systematic manner. Modifications to the lower-order solutions are made by eliminating the
secular terms in the equations according to the method of multiple scales. The basic theory is
illustrated by determining the free vibration characteristics ofa symmetric cross-ply laminated plate.

I. INTRODUCTION

In a recent paper (Tarn and Wang, 1993), we developed an asymptotic theory, based on
three-dimensional elasticity without a priori assumptions, for stress analysis of anisotropic
inhomogeneous and laminated plates subject to thermomechanical loading. The inhomo­
geneities are considered to vary through the plate thickness, and laminated plates are
important cases of inhomogeneous plates in which the elastic moduli are represented by
piecewise constant functions through the thickness. In the case of laminated plates, the
conditions of traction and displacement continuity between the lamina are inherently
satisfied in the theory. There is no need to treat the interfacial continuity in particular. We
showed that the equations for the asymptotic solution are precisely the governing equations
with loading terms in the classical laminated plate theory (CLT). While the three-dimen­
sional solution for a problem can be obtained in a systematic manner no more difficult than
the CLT solution, the asymptotic solution converges rapidly and gives accurate results. In
this paper we continue the study and extend the theory to dynamic analysis of anisotropic
inhomogeneous and laminated plates.

There exist a variety of theories for dynamic response of plates. An assessment of
various plate theories may be found in a review paper (Noor and Burton, 1989). It is well
known that the effects of rotary inertia and transverse shear deformation are significant in
the dynamic response ofanisotropic laminated plates. The CLT does not give reliable results
and extension of the theory to include these effects greatly complicates the formulation [e.g.
Yang et al. (1966), Ashton and Whitney (1970), Whitney and Pagano (1970), Reddy (1982),
Reddy and Phan (1985), Khdeir and Reddy (1989)]. Besides, any plate theory based on a
priori assumptions regarding the variation of displacements through the thickness provides
little information about the error estimation in the response predictions. Development of
an asymptotic theory for motion of elastic plates was attempted earlier (Widera, 1970;
Johnson and Widera, 1971). A straightforward expansion of all the field variables in the
elasticity equations in powers of a small parameter was made, leading to asymptotic
equations in rather cumbersome forms. Only the first-order equations were derived. The
higher-order equations become too complicated to be meaningful even for isotropic
materials. Their exposition is obscure to us in that it started by assuming the elastic moduli
and the mass density of the material can be expanded in terms of the designated small
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parameter in the formulation. Nevertheless, it was shown that the first-order approximation
yields the thin plate equations. No specific problem was solved in their papers to
demonstrate the applicability of the theory. As will be shown in this paper, the use of
straightforward expansion does not result in a valid solution for dynamic response of the
plate.

In the present formulation we restrict ourselves to the motion of the plate in which the
characteristic wavelength is of the same order as a linear dimension of the plate. It follows
essentially the basic approach of our previous work. However, special attention must be
paid to the nonlinear dependence of the transient response on the time variable. In the
asymptotic solution we anticipate that the frequency spectrum associated with the higher­
order effect will be different from that associated with the first-order approximation. As the
solution of higher-order equations in a uniform asymptotic expansion must represent a
small correction to the first-order response, a straightforward expansion of the displacement
and stress components using only a single time scale will not yield a valid asymptotic
solution. To obtain uniformly valid expansions regardless of the time span, it is necessary
to employ special perturbation techniques that account for the nonlinear time dependence
of the transient response. The method of multiple scales (Nayfeh, 1981) is adopted herein
and proved to be effective. In the formulation different time scales are introduced, instead
of determining the dynamic response as a function of a single time variable, we determine
the field quantities as functions of different time scales so that their variations can be more
closely examined. The situation is similar to observing the variations on the different time
scales of a watch. Upon introducing multiple time scales in the expansion and eliminating
secular terms at each level of asymptotic solution according to the method of multiple
scales, we show that the present asymptotic theory not only provides a uniform expansion
but also results in two-dimensional equations which include rotary inertia and shear defor­
mation effects for the asymptotic solution. The equations are reduced to the CLT equations
if these effects are neglected. Improvements in the asymptotic solution for the dynamic
response can be made in a clear and systematic manner. As in our previous work, the
expansions of the displacement and stress components are in powers of [;2, where [; hjL,
2h is the plate thickness and L is a typical in-plane plate dimension. Thus, the advantages
in its elastostatic counterpart remain.

In Section 2 we present the relevant three-dimensional equations and the prescribed
conditions for a general problem. The equations are recast into forms convenient for
the subsequent analysis. In Section 3 nondimensionalization and multiple time scales are
introduced in the asymptotic expansion. Successive integrations of the equations for the
first and second order approximation are detailed in Section 4. It becomes clear in the
exposition that a straightforward expansion does not provide a valid asymptotic solution
for long times whereas the use of multiple scales does by eliminating the secular terms. To
illustrate the basic theory, we present in Section 5 the solution for the motions of a simply­
supported cross-ply symmetric laminated plate. The natural frequencies and the normal
modes of free vibration are determined in a consistent manner. Application of the theory
to general problems is discussed.

2. BASIC THREE-DIMENSIONAL EQUATIONS

We consider an inhomogeneous anisotropic plate of uniform thickness 2h, having in
each point one plane of elastic symmetry parallel to the midplane. Let us select a Cartesian
coordinate system such that the plane X3 = 0 coincides with the midplane of the plate
and the x 3 axis is directed downward from the origin. Along the edge boundary of the
plate, appropriate edge conditions are prescribed. On the lateral surface X3 = - h, the trans­
verse load q(x], X2, t) is prescribed. On the surface X3 = h, the plate is free from external
load.

The stress-displacement constitutive relations expressed in the chosen axes of the plate
are given by
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0"11 Cll CI2 CI3 0 0 CI6 UI,I

0"22 CI2 C22 C23 0 0 C26 U2,2

0"33 C13 C23 C33 0 0 C36 U3,3
=

0"23 0 0 0 C44 C45 0 U2,3+ U 3,2

0"\3 0 0 0 C45 C55 0 UI,3+ U3,1

0"12 CI6 C26 C36 0 0 C66 UI,2+ U 2,1
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(1)

where the displacement components are denoted by UI> U2, U3 and the commas denote
differentiation with respect to the suffix variables. 0" 1 I> 0" 22, ••• , 0" 12 are the stress components.
cij (i, j = 1,2, ... ,6) are the 13 elastic constants of the material with one plane of material
symmetry. The material is assumed to be inhomogeneous through the plate thickness. Thus,
cij = cij(X3)' An important class of inhomogeneous plates is laminated plates, in which the
"elastic constants" and mass density of the material are piecewise constant in the thickness
direction.

The equations of motion are

(2)

(3)

(4)

where p = P(X3) is the mass density of the inhomogeneous material.
Expressing the stresses in terms of the differential operators with respect to UI> U2, U3

in (1) and eliminating 0"1 I> 0"22, 0"12 by using (2), (3), we may recast the three-dimensional
equations in such forms that on the left-hand side the differentiations are with respect to
X3, whereas on the right-hand side the differential operators are all expressed in terms of
XI> X2' as given by

(5)

(6)

(7)

(8)

where the superscript T denotes the transpose, and
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The in-plane stresses 0" 11, 0"22, 0" 12 expressed in terms of u., U2 and 0"33 are given by

(9)

To facilitate subsequent analysis, the boundary conditions for the problem are written
in matrix form as follows:

On the lateral surface the transverse load q(X., X2, t) is prescribed:

[0"13 0"23] = [0.0] onx3 = ±h,
0"33 = -Q(X.,X2,t) onx3 = -h,

0"33 = 0 onx3 = h.

Along the edges C. tractions Ph P2, P3 are prescribed:

[~' :, ::JF} = {;J,
0"12 onr""

in which n., n2 denote the outward unit normal at a point along the edge.
Along the edges r u displacements uy, ut u~ are prescribed:

(10)

(11)

(12)

In addition, the initial conditions for a transient response are prescribed by considering
the displacements and their time derivatives throughout the plate in the initial state of the
motion.

3. NONDIMENSIONALIZAnON AND MULTIPLE SCALES

Let us restrict attention to the dynamic response ofthe plate in which the characteristic
wavelength is of the same order as the linear dimension of the plate. As in its elastostatic
counterpart we define the dimensionless coordinates, displacements and stresses as follows:
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x = x./L, Y = X2/L, Z = X3/h,

u = u./h, V = U2/h, W = U3/L,

235

(13)

in which e = h/L < 1 is a dimensionless parameter, L denotes a typical inplane dimension
of the plate, and - 1 < z < 1. A specific elastic modulus or a reference uniform load which
has the dimension of the elastic constants may be chosen as Q. To be specific, let Q = C33.

As mentioned earlier, instead of determining the response as a function of t, we
determine the field quantities as functions of different time scales. Furthermore, it is
desirable to have an asymptotic expansion capable ofyielding recurrence relations for all the
displacement and stress components at each level of approximation. To this end, we
introduce in the formulation the multiple dimensionless scales:

(k = 0, 1,2, ...), (14)

in which Po is a reference mass density.
Because e is a small parameter, 'to represents a fast scale, 't. represents a slower scale,

't2 an even slower scale, and so on. Upon introducing (13), (14) in (5)-(9) and using the
chain rule of differentiation, the dimensionless equations can be written as

(15)

(16)

(17)

(18)

(19)

where

P. = p/Po,
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Ol} = Qij!C33 (i, j = 1,2,6), sij = SijC33 (i, j = 4,5).

We seek a uniform expansion of all the displacement and the stress components in
powers of e2 in the form :

Upon substituting (20) into (15)-(19) and collecting coefficients of equal powers of e,
we obtain the following sets of equations:
Order eO:

and

Order e2
:

and

W(O).= = 0,

a2

(1z(O),z = - D(1s(o) +P2 aT~ w(O)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)



where

u
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(30)

Higher-order equations can be written out if necessary. When the field variables are
independent of time, (21)-(30) are reduced to the recurrence equations for elastostatics.

The associated dimensionless boundary conditions are:

Order eO:

0'.(0) = 0 onz = ± I,

O'z(O} = -ij onz = -1,

Uz(Ol = 0 onz = 1,

onr,,,

(31)

(32)

(33)

(34)

(35)

Order e2k
, (k = 1,2,3, ...):

O'.(k) = 0 onz = ± 1,

Uz(k} = 0 onz = ±1,

where

ij = q/Qe3, h =Pk/Qe, (k = 1; 2), and P3 =p3/Qe2
,

UO = uVh, Vo = ugjh, Wo = ugjL.

(36)

(37)

(38)

(39)

(40)

(41)

4. ASYMPTOTIC INTEGRATION

The resulting differential equations can be integrated successively with respect to z to
determine the solution for a problem. Accordingly, we obtain from (21):
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W(O) = Wo (X, y, TO, Tj, •••).

From (22) we have

Integrating (23) and (24), we obtain

(42)

(43)

(44)

(45)

in reducing the double integral to the single integral we have used the integration by parts,
and PI = pktJ), lij = lij('tl), (i,j = 1,2) in L I•

The integration functions Uo, Vo, Wo in these expressions are determined from the
boundary conditions. The lateral conditions on z = - I are identically satisfied by (44),
(45). The boundary condition [O".m O')'z](O) = [0,0] on z = 1 gives:

(46)

Performing the simple operation, we find that (46) becomes

A II uO,xx +2A 16UO.xy +A 66UO,yy +A 16VO.xx + (A 12 +A66 )VO,XY +A 26V O,yy - B II wO,xxx

a2uo (J2
- 3BI6W O,xxy (B12 +2B66 )WO,Xyy - B Z6 Wo,yyy == llO'-;-T -111 :l2 (wo,x), (47)

{iTo uTo

A I6UO,xx + (A 12 +A 66 )UO.xy + A 26UO,y)' +A66VO,xx +2A z6Vo,xy +A 22VO,yy - B16WO.xxx

aZvo a2

-(B12+2B66)WO,xxy-3B26WO.x}').-BnWo,yyy == IlO'aT~ -Ill aT~'(WO,Y)' (48)

where

110 = II PI dz, III = II Plzdz, Ali = II Qijdz,
-I -I -I

The boundary condition (1.(0) = 0 on z == 1 gives

Bli =II Qlizdz, (i,j = 1,2,6).
-I
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By using (46) in (49), this equation can be written explicitly as
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(49)

D II wo,xxxx +4D 16WO,xxxy +2(D 12 +2D66 )WO,xXYy +4D26 W O,xyyy +DnWO,yyyy - B II UO,xxx

- 3B 16UO,xxy - (B 12 +2B66 )UO,xyy - B26UO,yyy - B 16V O,xxx - (B 12 +2B66 )VO,xxy - 3B26V O,xyy

a2
W a2 a2

- BnVO,yyy = ij- 120 ar~O +112 or~ (WO,XX +WO,yy) -III ar~ (uo,x +vo,y), (50)

where

The terms associated with III in (47) and (48) represent the effect of shear deformation
on the in-plane motion, the term with III in (50) represents the effect ofin-plane deformation
on the flexural motion. The term with 112 is the flexural rotary inertia. If one starts with
the displacement field according to Kirchhoff's thin-plate theory without omitting the terms
of rotary inertia and shear deformation effects, it can be shown in a straightforward manner
that (47), (48) and (50) are exactly the resulting governing equations for the displacements.
Neglecting these effects, the equations are reduced to the CLT equations for a vibration
problem [see, e.g. Ashton and Whitney (1970)]. When the inhomogeneities are symmetric
about the midplane as for the case with symmetric laminated plates, Bij = 0 and III = 0, it
can be seen from the first-order equations that the in-plane motion and flexural motion are
uncoupled. The solution of (47), (48), (50) must be supplemented with the edge conditions
(34)-(36) and the initial conditions. Once Uo, Vo, Wo are determined, the displacements and
all the stress components of the first-order approximation can be obtained using (42), (45)
and (25).

Carrying on the solution to order [;2, we obtain

(51)

(52)

(54)

in which
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Note that the lower limits in the integrals of ({JI and 4>1 have been deliberately chosen
as zero so that ({J I = 4> I =°at z = 0, thus the displacements on the midplane can be more
conveniently examined, By using the boundary conditions (37), (38) to determine u}, v},
WI as before, it is easy to see that the boundary conditions on z = -I are identically
satisfied, and the condition [O'w O'yz](I) = [0,0] on z = I leads to

A IIUI,xx +2A 16Ul,xy +A66Ul,yy +A 16VI.xx + (A 12 +A 66 )VI,xy +A 26VI,yy - B II Wl,xxx

- 3B I6 WI,xxy - (B 12 + 2B66)WI.Xyy - B26WI.yyy

82
uI 82

= Ilo~ -III-;Z(Wl,x)+/II(x,y, l,'to,'tj, ...), (55)
u'to u'to

A 16UI.xx + (A 12 +A 66 )UI,XY +A 26 UI,yy +A 66VI,xx +2A 26VI,xy +AnVl,yy - B 16WI,xxx

- (B 12 +2B66 )WI,xxv - 3B26 WI,xyy - BnWl,yyy

82v I 82

= 110~ -III -;z (WI,y) +/21 (x, y, I, 'to, 'tj, .. ,). (56)
u'to u'to

Using (54) in the condition O'z(l) = 0 on z = I leads to

D 11 WI,xxxx +4D 16 WI,xxxy +2(D 12 +2D66 )WI,xxyy +4D26 WI,xyyy +DnWI,yyyy

- B IIUI,xxx - 3B 16 U I,xxy - (B]2 +2B66 )UI,xyy - B 26 UI,yyy - B I6 V I,xxx - (B]2 +2B66 )VI,xxy

- 3B26VI,xyy - Bnv I,yyy

Equations (55)-(57) are of the same forms as the first-order equations except with the
added equivalent "forcing" terms III, 121 and ql' Had we not introduced the multiple time
scales 'tl, 't2,"" in the formulation, we would have ended up with forcing functions,
completely defined by the first-order solution, having exactly the same frequencies as
those of the first-order natural frequency. This would either induce resonance so that the
modifications become unbounded in magnitude, or yield the [;2 solution that contains secular
terms that are not small for long periods of time. Consequently, the asymptotic expansion
would break down. For the expansion to be uniform and valid regardless of the time span,
the higher-order corrections must be free of secular terms. Obviously, the presence ofII I,

121 and q I is the source of the secular terms in the general case. Thus, for uniform expansion
we must distinguish from 111,/21 and q I the terms that show the same frequencies as the
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considered modes of vibration. These terms must be eliminated. As the functional depen­
dence of each quantity in /1 h fll and qt upon ro is known from the first-order solution,
setting the coefficients of the functions that cause secular terms for the second order
corrections equal to zero will result in a system ofquasi-ordinary differential equations with
independent variables r b r 2, ••• , from which the dependence of the field variables on r I

can be obtained. It follows that the modification to the leading-order solution can be
determined. We remark that the functional dependence of the field variables upon r 2, r 3, ••• ,

is as yet unknown at the second-order level of approximation; it is determined in a similar
fashion at the subsequent levels by eliminating the secular terms as one proceeds to the
higher order.

While the solution at each level of approximation is no more difficult than the cor­
responding CLT solution, the present theory is capable of providing all the three-dimen­
sional stress and displacement components for a problem and the asymptotic solution
converges according to the powers of e2

• The theory is best illustrated by applying it to a
specific example.

5. ILLUSTRATIVE EXAMPLE

The motion of a cross-ply symmetric rectangular laminated plate is considered. The
plate is composed of orthotropic layers with material axes coincident with the plate axes.
With this lamination scheme, in addition to

Bij = III = 0, we have A 16 = A 26 = D 16 = D26 = Qt6 = Q26 = O.

We assume that the field quantities have been made dimensionless according to (13)
for simplicity. The edges of the plate are simply supported with the boundary conditions:

v = W = 0, Ux = ° on x = 0, a,

U = W = 0, uy = ° on y = 0, b.

(58)

(59)

As an illustration, let us consider the free motion. When the lateral transverse load
q=0, solution of (47), (48) and (50) for order eO can be obtained by letting

(60)

(61)

(62)

where a; = m1T./a, fJ = n1T./b. W mn are the circular frequencies of the motions. Uo, Vo and Wo
are the amplitudes. The phase angles ()mn are independent of r 0 and are as yet undetermined
functions of the time scales r b r 2, ••••

Upon substituting (60)-(62) in (47), (48) and (50), we have

Equations (63), (64) have a nontrivial solution only if
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I
AIIa.2+A66P2-11OW~n (AI2+A66)a.P 1_

(A 12 +A 66 )a.P A66a.2+AnP2-Ilow~n - 0,
(66)

which yields two positive roots for the first-order approximation of the natural frequencies
for the in-plane motion.

From (65) the first-order frequencies for the flexural motion are given by

Evidently the flexural motion and in-plane motion are not coupled at this level of
approximation. The first-order frequencies of the flexural motion coincide with the CLT
results [see, e.g. Aston and Whitney (1970)] if neglecting the rotary inertia (II2 = 0). For
subsequent analysis we denote the frequencies and phase angles of the flexural motion and
in-plane motion by w~n, w~~, w~~, and J~nl J~~, J~~, respectively. To each frequency there
corresponds a normal mode of motion which is determined by using (60)-(65). In the
following the motion corresponding to w~n is given in detail.

Using (60)-(62) in (42)-(45) and (25), we obtain the first-order solution corresponding
to w~n as

where

- 2 - P2) . . fJ (f ~f )O"x(O) = (Qlla. +Q12 Wozsma.xsm ycos WmnTO+umn ,

(68)

(69)

(70)

(71)

(72)

(73)

(74)

(75)

(76)

O"zo(z) = - fl 17(z-17)[QIIa.4+2a.2P2(QI2+2Q66)+Qnp4

- PI (a. 2 + p2)(W~n)2] d17 - (f 1 P2 d 17) (W~)2.

It can be verified that the edge conditions (58), (59) are exactly satisfied. If we stop
here, J~n, may be considered constant. The results of the first-order approximation are
accurate to 0(e 2

).
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To obtain corrections to the first-order solution, we proceed to order eZ
• Upon sub­

stituting (68)-(76) in (51)-(54), we obtain at z = 1:

(k a[)~n k) . . f3 (f d )ql = 3~ + 4 Wosm IXxsm ycos romn'O+umn ,

(77)

(78)

(79)

where k; (i = 1, 2, 3, 4) and the relevant functions for the e2 solution are given in the
Appendix.

Substituting for fll' f21 and ql from (77)-(79) into (55)-(57), we find that the
forcing term in (57) has ro~n as its frequency. If we were to use it in the solution, the time
dependence of the particular solution would be of the form f(, 0) cos (ro~n'0+[) ~n) +
g(,o) sin (ro~n '0 +[)~n), where f and g are functions of '0' Then the corrections are small
only for restrictive values of,o. Since r 0 is arbitrary, the corrections inevitably may become
large compared with the first-order solution. This is not admissible for a uniform expansion
unless the secular terms are eliminated. Inspecting (77)-(79), we find that q 1+fll, 1+f21.2
produces secular terms in the solution whereasfll andfzl do not. Settingql +fll, 1+f21,2 = 0
at z = 1 in (57), we have

(80)

The solution of (80) is

(81)

It is worth mentioning that had we not introduced the multiple scales '10 'z, ... ,in
addition to '0 in the formulation we would have had in ql only the k4 term. Then it is
impossible to avoid the secular terms and the expansion is doomed to failure.

Substituting (81) in (72)-(76), bearing in mind that 'I = e2
,0, we find that all the field

quantities are now time-dependent functions ofcos {[ro~n +eZ(1Xk 1+ f3k2-k4)/k3]ro +Smn}'
Thus, it may be deduced that the natural frequency at the e2 level of approximation is
modified to ro~n +ez(lXk l + f3k z-k4)/k3•

After eliminating the secular terms, the solution of (55)-(57) for this problem can be
obtained by letting

(82)

where Smn are functions of r 2, r 3, ••••

Substituting (82) into (55)-(57), we obtain

[A II1X
2 +A 66 f3 2

-llo(ro~n)Z]UI +(A IZ +A 66)IX/3V1 = kl> (83)

(AIZ+A66)cx.f3Ul +[A661X2+A2zf3z-11O(ro~n)Z]VI = k z, (84)

Obviously, with (67), eqn (85) is identically satisfied and (83) and (84) permit a unique
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solution for VI and VI' Upon using (82) in (51)-(54) and (30), the [;z corrections to the
displacements and stresses can be determined in a way similar to the first-order solution.
The results for displacements are

- . f -
U(l) = [VI -iXZWI +1>11 (z)] WoCOSiXX smpycos {WmnTO + [(iXk j +Pkz-k4)/k3JT] +Omn},

(86)

-. f -
V(I) = [VI - pzWI +1>ZI (z)] Wosm iXX cos pycos {WmnTo+ [(iXk 1 +Pkz-k4)/k3JT.1 +Omn},

(87)

in which ¢ll(Z) and ¢ZI are given in the Appendix.
The second-order solution is obtained by combining (68)-(76) with (86)-(88) using

(20). Thus, we have the displacement field given by

We observe from these expressions that at least for this problem the first-order dis­
placement field for the flexural motion is linear in Z as assumed by the classical plate
theories. However, the displacements of the [;z order are related to cPl(Z), ¢II(Z) and ¢ZI(Z)
which depend on the transverse shears as well as the lamination scheme. Evidently the
variations of the displacements through the plate thickness are not only loading dependent
but also very much material dependent. When the material is homogeneous, the relevant
expressions can be integrated to give the z-dependence for the [;z order as cPl(Z)~ZZ,

¢II(Z) ~ z; zz; Z3 and ¢ZI(Z)~Z; zz; Z3. Then the variations of the displacements through
the thickness can be represented by simple polynomials in z. The results put the higher­
order plate theories in perspective.

In Table I we present the numerical results for the fundamental frequency of a square
[0/90/90/0] laminated plate in comparison with the results obtained according to CLT, the
first-order shear deformation theory (FSDT) and a higher-order shear deformation theory
(HSDT) (Reddy and Phan, 1985). We made the computation using the layer material
properties given by ELIET = 40, GLTIET = 0.6, GTTIET = 0.5, VLT = VTT = 0.25, where the
subscripts Land T refer to the longitudinal direction and transverse to fiber direction. The
elastic constants can be deduced from these data. The asymptotic solution was carried out
to the second order. In cases where the span-to-thickness ratio is large the second-order
modifications are minor. The modifications become significant as the thickness increases

Table 1. Comparisons of the normalized fundamental frequency, w= wflla2(po/ET) 1/2/2h, a is the
plate dimension

a/2h 10 12.5 20 25 50 100

CLT 18.891 18.891 18.891 18.891 18.891 18.891
FSDT 15.083 16.120 17.583 17.991 18.590 18.750
HSDT 15.270 16.276 17.668 18.050 18.606 18.755
Present (eO) 18.738 18.793 18.853 18.866 18.885 18.890
Present (e2) 13.417 15.349 17.491 17.993 18.665 18.835
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due to the pronounced thickness effect. When the span-to-thickness ratio is less than 10 the
results of the second-order approximations are not as conformable with the FSDT and
HSDT results as we would expect. The asymptotic solution must be continued to the higher
order for thick plates. In view of the recurrence of the solution forms [compare (60)-(62)
with (82)J, the asymptotic solution for this problem in principle can be determined to any
order and provides results with any degree of accuracy. However, the expressions of the
analytical solution become too involved to be meaningful. We shall not pursue the asymp­
totic analysis further at this time.

6. CONCLUDING REMARKS

The equations for the asymptotic solution based on the present theory are essentially
the same as the CLT equations. However, the CLT equations in the general forms are three
simultaneous partial differential equations which are very difficult to solve analytically, even
in the case of elastostatics. The solution is less formidable when the plate is symmetric
about the midplane as the equations are uncoupled. Analytical solutions for a few problems
in which the equations are coupled may be obtained. For example, the problems of anti­
symmetric cross-ply and angle-ply laminated plates with appropriate edge conditions can
be solved analytically with relative ease using the present formulation. The CLT solutions
for these problems can be found in Ashton and Whitney (1970). In fact, as long as the CLT
solution for a problem is available, we can determine immediately the first-order solution
for the displacements and all the stress components, including the transverse shear and
normal stresses. In the case of laminated plates the interfacial continuity conditions are
inherently satisfied. The advantage is more appreciable when the laminated plates are
composed of many layers in that there is no need to treat the layers individually.

When the flexural motion and the in-plane motion are coupled together, it is essential
to distinguish from the simultaneous equations at the higher-order level which terms cause
the secular behavior in the particular solution and eliminate them accordingly. They can
be easily identified provided that the equations are decoupled. The decoupling can be
accomplished by expressing the displacements in terms of the normal modes of vibration,
using the standard procedure [see, e.g. Meirovitch (1967)] for vibration analysis of multi­
degrees-of-freedom systems.

In the illustrative example we considered only the free vibration characteristics of the
laminated plate. The transient response due to forced motion in itself is complicated. The
eigenfunction expansions of the field variables in terms of the normal modes of the plates
may be employed. Alternatively, the Newmark's direct integration method may be used as
exemplified in Reddy (1982). Although the first-order solution is relatively easy to obtain,
the expressions for the higher-order solution are more involved. Therefore, it is essential to
have a numerical scheme which enables one to calculate the higher-order corrections without
determining the lengthy expressions for the field quantities explicitly when necessary data
of a problem are provided. Development of a numerical scheme in conjunction with the
asymptotic theory is of practical importance and is the subject of continuing study.
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APPENDIX

The relevant functions for the e2 solution of the example problem are

(AI)

(A2)

(A3)

(A4)

(A5)

(A6)

in which

cP,,(z) = J: [sssu"o+(z-'O(c,31X2 + cB!F)c33'IX'1Jd'1,

cP11(Z) = l' [S44Uy,O+(Z-'1)(CI31X2 + cB!F)C3,1 P'1J d'1,

fll(z) = [Q'11X2+Q66Pl_p,(W~)2JcPll +(Q12+Q66)IXPcP1I -IXU,OC13C33',

f21(Z) = (QI2 +(66)IXPcPll + (Q661X2 + Q22P2-PI(W~n)2JcP21 - PU,oCnC33
1

,

k, (z) =rI f'l (z) dz, k 2(Z) =r,f21 (z) dz,

k,(z) = 2w~n[(1X2+P2) t P''1(Z-l1)d'1-t P2 dl1J

k 4(Z) = t (Z-l1)(lXfll +f:!r2,)dl1-(W~n)2 t P241 ,('1) d'1.

Atz = 1,1 '1 = fl p,zdz = obecause ofsymmetry, then we have
-I

k, = -2w~n(1X2+p2)I12+12ol,

k 4 =f, (I-Z)(lXfll + Pf2,)dz- (w~n)2f /241, (z) dz.

(A7,8)

(A9)

(AIO)


